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Abstract

It is customary to time share or commutate the return data liﬁk
from spacecraft. This means that the data transmission is periodically
interrupted. Because of the dual rate, a beat phenomenon appears |
between thé two periods vhich results in the generation of a double
infinity of switching tones. Sampling of time series déta under these
conditions results in violation of the fast rate Nyquist limit with the
consequent folding of the spectral density distribution function of the
data to both higher and lower fregquencies unless the presample filter
bandwidth is determined by the commutation frequency. In the time
domain, the consequence is to introduce rectified components of the
spectrum at zero frequency. This is the companion folding to that
occurring in spin modulation especially in a turbulent or highly radi-
ative hydromagnetic medium.

These conditions are applied to a hypéthetical magnetometer experi-
ment and it is shown that, depending upon the frequency content, the
data can be intrinsically aliased at the commutation switching rate of
the telemetry system and, further, second order aliased in the data
reduction sampling procedure. The presence of the doubly aliased time
series for each of the magnetic field components can lead to potentially
serious errors depending upon the form of the spectral amplitude func-

tions which, in turn, are unspecifiable if folded.
1. INTRODUCTION

It is common practice to time share telemetry among spacecraft

experiments; that is, each experiment in turn occupies the entire
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transmission link for a fraction of the total time available. 1In this
process, called multirate sampling, the instantaneous sampling rate is
likely to be high compared to the rate of commutation. The importance
of correctly understanding the multirate problem arises from the
requirements of the Nyquist criterion which states that a funchbion

band limited to the fréquency domain w < Wy, where wg is some cut-

off, is completely specified by periodic sampling at intervals of

7t/wo, except for harmonic terms having zeros at the samgling points

[Bracewell, 1965]. Increasing the sampling interval gime causes the
spectral ordérs to overlap so that higher frequencieg, defined by wg,
appear within the passband..l This is called alias aﬁd for periodic
sampling, which does not observe the Nyquist criterion, results in the
frequency shifting of the spectral terms.

In the singly periodic case, folding to . dc (zero frequency) rarely
is experienced except for extreme violations of the sampling theorem.
However, for multirate sampling, it is easy to-show that folding to dc
can occur commonly. In general, spectrél folding under the conditions
of multirate sampling is characterized by both upward and downward fre-
quency folding for systems which are low pass filtered. When folding

extends to zero fredquency the effect is demodulation; nonzero spectral

components are shifted to the zero frequency axis.

In an earlier paper [Sonett, 1965] the multirate problem was
explored in a general way including when the natural spectrum of fre-

gquencies in the data were contained in the neighborhood of the spin

1strictly speaking, upward folding in the multirate case can also

take place as is seen by considering the case discussed later..
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rate of the satellite. From the standpoint of folding both cause
essentially the same effect when spectral components are folded to zero
frequency, i.e., vector additions to the dc value of the Qata are

introduced.
2. PRELIMINARIES

The process of sampling can be coded in a number of ways. It is
even possible to construct a sampling sequence which is multiply peri-
odic and recover data where the Nyquist limit cofresponds to the aver-
age sampling interval. To do this requires that very special presample
filters be applied to the data. Bracewell [1965] points out that in
the limit where pronounced multiple periods are Qbserved, sampling
can be done by'taking the function value together with n derivatives
at widely separated points [c¢f. Linden, 1959]. However, this procedure
has no apparent advantages in the design of a sampling switch system, "
and there are disadvantages in the presence of noise which may make
such sampling unattractive. It is also fundamental to most sampling
theories to assume a stationary spectrum. This is an important limita-
tion when attempting to expand bandwidth by the use of pseudonoise
codes for the addressing of a switching matrix. For a birate switch
where two ©® <function switch sequences are interlaced, Bracewell
[1965] shows how data can be recovered at the mean switching rate in
accordance with the Nyquist criterion, provided the presample filter

has a weighting function of the general form

2
sin 2st _ ~ sin ) |
= [x cot(am)]lt (}—:a;—{>

where o is the sample pulse interval.
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To compﬁte specific alias errors from data, the phase content
must be preserved so that the form of the spectral function cannot be
stated in terms of the power but must be given as a spectral density
distribution in complex amplitude. If the Fourier coefficients are
completely specified, then it is possible to compute the properties
of the time function. We shall be especially concerned with the
time function in the neighborhood of zero frequency since that is the
measure of static field components. The basic limitations in estab-
lishing a meaningful measure of errors are due to the irreversibility
of the sampling which masks the form of the function under conditions
where the data are aliased. Thus we can only estimate some model
errors and show how they can grow to significant proportions. ZFinally,

this leads to the conclusion that unless specific assumptions are made

regarding the spectral content of the data, it is meaningless to assign

an experimental accuracy. We have chosen to consider only a scalar

time series for discussion even though magnetic fields are vectors.
Certain other effects can creep in when the vector field is reconsti-
tuted from the component measurements. However, we believe it is
reasonable to assume that the situation cannot grow:s;mpler. It is
further assumed that system linearity is preserved throughout the
déta chain so that one can, with assurance, move reversibly from the
time to the transform domain.

The theoretical treatment must also be based upon the assumption
that the spectrum of the data to be examined is time stationary. Other-
wise, there ié no possibility of analysis with the exception of slovly

varying data to which trending theory applies. We make the assumption
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that sufficieht data are available so that processing takes place over
a time span sufficient to define the spectrum. It is also assumed
that the most general representation of the function for the time
series contains both even and odd parts, though we shall deviate from

this for special purposes of illustration.

3. THE SPECTRAL DISTRIBUTION FUNCTION FOR COMBINED

© FUNCTION APERTURE SAMPLING

We discuss here the spectral distribution functiqn for the case
of combined ©& function-aperture sampling. The discussion of the
properties of the function which describes the distribution of tones
is then followed by application to a hypothetical case, and the recti-
fication offsets which are possible are explored in detail.

Given a periodic sequence of © functions,

(o]

g(t) = Z 5(t - nTa) (1)

—00

it is well known that convolution of the transform of g(t) with the
transform F(w), of a time series, f(t), yields the spectral replica-

tion [Bracewell, 1965].

0
F(w) = & Z F(w - nwgy) (@
n=co
where F(w) is the ensemble of spectral density distributions summed
over all orders of réplicated spectra, wg = 2x/Tl,'and Ti 1is the time

interval between the sampling 'on times.'
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When the function g(t) is modulated or interrupted by a function
g(t)* which blanks the sampling pulses in the manner shown in Figure 1,

igure 1
F(w) is generalized to [Sonett, 1965]

Z Z Tl( > Sm:dci&/{;fz F(w - nwg - o) @

n=-w k=-o0o

It is observed that, in general, the function F is a complex quantity
for any valuerof the argument. The complex nature of F derives, in
turn, froﬁ f(t) which quite generally contains both even and odd parts.
The expression in equation 3 carries the amplitudes and the original
order of replicated spectra; in addition, it contains a satellite
structure of spectra centered about each of the ofiginal members of the
sequence generated for the periodic case. The fast sampling period Tj
corresponds to the sampling rate given in equation 2; To is the period
of the modulation, g(t)¥ n is the order of the primary spectra as
given in equation 2; k is the satellite multiplet order; T +the 'on-
time! for g(t)¥* wg = 27/Ty; wp = 2n/To; and F(w - nwg - kw;) repre-
sents replication of the original data spectrum at order un,k. There
exists a double infinity of spectrs corresponding to the extension of
the single infinity given in equation 2. The factor preceding F is
the amplitude modulation to be applied to a particular order k. The
highest amplitudé spectra obtained are governed by the factor
1/T3(t/T2). Thus, as the duty cycle of the commutation (v/T=) is
changed, the amplitude of the maximm (k = O) spectra various accord-
ingly. The number n denotes the spectral order of the terms given

for simple periodic sampling (equation 2), and k denotes the satellite
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spectral order for each n. The amplitudes of the spectra are,
therefore, modulated according to the order number, k.

The generation of the function, whose spectrum F(w) is displayed
in equation 3, is illustrated in Figure 1 which shows the three func-~
tions forming the totel time series. Figure 2 shows the tones formed

from the switching functions alone. The generation of the subsidiary

tones can be regarded as due to a beat phenomenon between the fast and

slow rates in all order of spectra. The last step in the construction

consists in using the switching functions for sampling a real time

series. Then replications of the original data spectrum are gener-

ated about each of the lines of the switching tones. Equation 3 corre-

sponds to an extension to higher order of the usual concept of spectral

folding or alias. The imporﬁant distinction is that for the extended
case, the relevant Nyquist limit requiréd to guarantee no spectral
folding is determined by T» rather than Ti. The character of the
folding is determined by the dut& cycle, T/Tz, and the spectral dis-
tribution function, F(w). Equation 3 shows that secondary lobes are
present as determined by the modulation envelope.

In order to express the meaning of equation 3 in a physical
manner, consider the following restricted problem. Given a spectral
distribution, then F(w), as before, is band limited to satisfy the
Nyquist limit .imposed by Ti. The band extends from zero to one-half
the frequency of the dominant line, n = 1, which is recognized as the

first-order switch tone for the simple periodic sampling with period

Ti. We now restrict consideration to the first lobe of the modulation

function sin x/x where x = x7/To. As an example we shall take a duty

igure 2
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cycle with commensurate periods vhere T/Tg Z 0.25 wvhich gives Zeros
of s8in x/x for k = 4, 8, . . . . Thus these spectral lines are
suppressed. (Fbr particular values of Tw, the vectors afe equally
dense in phase and the spectrum is suppressed. For this reason,
certain switching tones do not occur in the generation of the total
switching spectrum.) N

The spectral lines examined here and upon which the data spectral
function, F(w), is replicated are given by n = 0, -3 <k< 3-for the

-zeroth order of n. There will be some contribution from spectra

associated with n =1. A ;ittle reflection shows fﬁat these contri-
butions are associated with n =1, k = -3, -2, -1. ’There are conse- .
quently a grand total of ten overlapping spectra counting only first
lobe contributions. Those in the negative frequency domain are folded
about zero and therefore are degenerate; the total measured count
becomes seven. The complete spectral density which is measured is

due to the composite values arrived at from summing these members.

The various spectra are shown in Figure.3 in exploded form for clarity.
All members have an equal span in freguency; however, the amplitudes Sl
are governed by the modulation, sin x/x. The total spectral intensity

is arrived at from graphically adding the contributions frqm the various

spectra or alternatively summing equation 3. For the case cited,

T/Tg £ 0.25, the spectral density amplitude distribution is given Dby
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F(w) = E%I [F(w) +,§%§ Fg,a(w - wr) +-% Fo,o(0 - 20q)
22 N .
" 3n Fo,al® = 3wr) + ETS F) a0 - wg + 30;)
+'%% Fl,z(w - Y +.§#§ Fl,l(w - Wg + “T)] (h)‘,

vhere all but the first term are alias contribu.tions.l2 - The remarkable

- form of equation 3 and the diagram of Figure 3 are strongly remihiscent
of diffractidn theory. Tq workers in that field, it is iﬁmediéfely
evident that the sampling procedure being discussed here has a transform
which is identical to the space pattern of diffraction established
through a slit whose aperture corresponds to the gate function, g*(t),
followed by a uniform grating.

It is clear from inspection of equation 3 how increasing the sampling
interval can decrease the alias. Consider the case where data are
sampled at a high rate for an extended period of time but with preserva-
tion of the duty cycle cited. Since Ts is long, the subsidiary
spectra will converge and the first zero of ‘"sin x/x will be achieved
guickly. If the true data spectrum has important high frquency com-
ponents, the,data bandwidth will tend to be large coﬁpared to the width
of the first lobe of the modulatién function, sin x/x- Therefore, the
fractional error in the proper position of an interval from a secondary
spectrum will decrease, and the spectrum will appear to approach strict
superposition. In short, the switch tones from T, will tend to

coalesce about the central terms n =1, k = O. This is the basis of

REquation 4 tacitly ignores phase for the sake of simplicity and

assumes all contributions are purely real (see section 5).
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the intuitive conclusion that a commutated time series with very long
‘on time' can effectively generate a useful spectrum without necessarily
having serious folding problems. An exémple would be a data link that
samples for one day every other day.

The generalization of the usual alias probleﬁ expressed for periodic
sampling is commonplace because of the use ?f commutation or time
sharing in satellite data transmission. Without periodic sampling and
subsequent buffering prior to timé’sharing, the alias problém is greatly:
complicated and cannot be satisfactorily resolved if the Nygquist limit
for the lower frequency, g(t)*, has not been observed in the presample

filtering operation.
4. ARITHMETIC AVERAGING OF THE FAST SAMPLES

Examination of the form of the spectral distribution function
discloses that reduction of the order of the alias might be entertained
by a procedure vwhich can be describedAsimply as burst averaging the
'on-time' data. This corresponds to convolving the data with a rectangu-
lar weighting function, equivalent to numerical filtering with a
sin x/x transfer function. However, the process does not produce a
running average and therefore the bandwidth, albeit aliased, is deter-
ﬁined by the interaveraging time, To. We can represent the operation
asé follows. The interrupted function g(t) is constituted of bursts

of deltas, each having | menbers; therefore, '

: % J
g®le(®)*= ) ) ot - ar - uT) (5)

n=-c g=1
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where T is:the interval between the fast occurring pulses, J is the
order number in the subsequence of fast pulses, n is the order of the
pulse group counted over a time interval, To, vhere T> is the period
associated with the repetition of a puise subsequence. We reorder

equation 5 by assenbling all pulses having the seame index, j. Therefore,

J o » A |
s(®)a(®)* = ) ) 8(s - ar - ama) (6)
g=0  .n=-o
The reordered sequence is to be understood as a finité set of sequences,
each of which has a strictly periodic time of - Tz. The procedure for
reordering is shown diagrammed in Figufe 4, Froﬁ the shifting theorem,

, igure U4
the companion transforms in the frequency domain are represented by

0

. J . '
G(w) é-.%— Z Z G(w - rnst)el(1 ? | (7

It is apparent that one can operate either in the time or frequency
domain in order to shift the spectra into strict superposition. In
the time domain, the sample pulses in the sampling interval when
g(t)* =1 are inversion delayed with the first sample delayed by Jj7.
The last pulse is given zero delay and, in general, the delay will be
given by @A. The delay must be denumerable, and in the processiout-
lined, the proceésing is a posteriori. In the frequency domain, the
equivalent operation as indicated from equation 7 is to apply & linear
phase shift wﬁth frequency of the aﬁount igrw. -

The previous discussion is the mathematical description of Qhat can

nearly be made to be simple arithmetic averaging. Ffom,the spectral

v
i
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standpoint, however, it is well to point out that the Fourier coefficients
for each of the samples are complex and that it is the process of time

or phase shifting which rotates these into the real axis éo that simple
addition can be performed.

Consideration of the process just described indicates a flaw in its
application since it has not been stated that the presampled date has
been properly Nyquist limited. To do this requires that the high fre-
quencies be removed. When this is done and only those frequencies remain
which properly observe the Nyquist limit for the low frequency switching,'
the averaging.process can be said to have beén carried-out in an
intrinsic manner by the analog filter. In short, averaging or what is
equivalent, the application of a weighting function, can only be carried
out in the instance considered prior to the sampling operation. When
done after sampling at the fast rate the high frequency alias is
permanently inbedded in the data.

The, fallacy in this approach when the proper Nyquist frequency is
observed lies.in the 1avish and nonoptimum use of bandwidth, i.e.,
there is no point in sampling faster than at a rate allowed by the

Nyquist limit.3
5. PHASE

Phase information is not carried explicitly in equation 3. To com-

pute folding errors it is necessary to view F(w) as a complex Qeétor

?An.exception to this would require utilization of the,cbmplicated
weighting function described earlier with its potentially disadvantageous

characteristics.

!
i
i
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or else ini%ially restrict computation to rms sums of spectral strips
which contribute to some spectral region, say w = O.

To examine phase information, the time function f(ﬁ) is separated
so that ’4

£(t) = £ (t) + fo(t)

where fo(t) = fo(-t) and fg(t) = ~fg(-t) being, respectively, the even
and odd parts. We take f£(t) to be real and thus the Fourier transform
is Hermitian; i.e., the real part is even and the imaginary part odd.

Thus if the transform of ~ £(t) is G(w) = x(w) + igp(w)

~

o(w) = ﬁ'—; f_: £ (b)e ™ at (8)
and |
W) | g™ 0

The transform of the sampled function (equation 3) is expressed as

§j Si [énk(w,ws,wT) + innk(w,ws,wT)] (9)
k=~ , A

n=-o

and it follows that the terms sought about the origin are given by

AN ‘
o = 1in —oonk(®) 5 B= Lim = ZMax()
w0 ACK =0 w0 AT lu=o (10)

It follows further from the above arguments using the properties of the

shifting theorem that the phase at the origin is given by

1B . gan~2 Joo 4 tan‘1~295 oo (11)

00 o1

Qlw

tan”™
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The requireﬁent that all aliases disappear is given by :

- Z L o] - Mo = 0 (12)

n-—oo k——oo n==~00 k=—co

00

Bach of the spectral replications generated carry the same phase as
the original function, F(w). To the phase functions must be added the
igqwTt .
shift e & according to equation 7. Thus the phase function for a

particuler replication is given by

Py j(w) + quT

where
N o
(w) tan”t | =4
ij

and qwT 1is the contribution from sample lag time. At w = 0, qwt = O
for any spectral replication. However, without the complete complex
form for F(w), one cannot hope to resurrect the correct dc field
values when the folding overlaps w = 0.

Rectification and demodulation error estimates. The process whereby

a nonzero spectral contribution is shifted down to zero frequency is
exactly equivalent to the operation of demodulation or rectification
and is tantamount to fhe conventional operation of demodulationlof com-
mumnication practice. Any folding operatien which carries w= 0 is a
contributor to the rectification process whether it arises from sampling
or from another effect, such as'spin modulation folding. Thus, in
general, it is possible to envision several means of making contribu-
tions which are assembled in the neighbérhood of the origin énd which

14
/
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have arisen from different portions of the original spectrum. Using
equation 4, the absolute errors both for the real and imaginary parts

of the spectrum in the neighborhood of the origin and due to the folded

contributions are

s omo hjr-T'l [2”/5 éo',;“" - ur)
+ 250,2(“’ - 2uwy) +.2_“.3]_§ g'o,s(“’ - 3%)]' N (‘1,33) s
] m w=0 ) lm]'.ifl [2"/5 o, 1(“’ - o)
v 2n oo - 2ur) + B2 5 (o - 30r) | G

Assume now for computational purposes a linear ramp of the form

E(w) = a - bw; t(w) =0 when \w\ < wg
(14)
1(w) = 0 everywhere

where a is taken as unity and b =1 for wy = (ﬁ/Tl)- The tacit
assumption is that F(w) is real everywhere making f(t) Hermitian.
Other possibilities exist and are perhaps more realistic. However,
for our illustrative case, simpligity dictates the choice made. This
lies somewhere between a maximum and minimum possible set of errors.
The worst case would be when either ¢ or 7 were zero everywhere and
the speétral contributions were summed arithmetically. A minimum
exists when the conditions given by equation 12 are patisfied'and all:

folded contributions sum to zero. : !
} . ' ’I
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In our example we attempt to strike a mean by making all Fourier
components real but to rms the sum.

Table 1 is a compilation of errors for the linear ramp and fms sum-
ming with variable bandwidth specfra characterized by values normalized
to & = 1 for w = 5/Ty, the original singly periodic Nyquist velue. It
is seen that the errors grow rapidly as the bandwidth of the data spec-
trum is increased as would be expected upon heuristic grounds. Also,
the assumption of errors smaller than about 10% means that the spectrum
- should be assumed to become insignificant beyond one-half the commuta-
tion frequency. The calculation assumes zero contribution from the
minor lobes of n = 1 and from higher order terms, ie.;, n =22 ¢ o ¢ o
That this underestimates our simple computation is seen from the
divergence which would exist if an essentially flat spectrum were
taken. In that case, the limiting parameters would possibly be the
true quadrature component of the sPeétrum together with thé finite
width of the delta function sampler which would cause the contributions
to be cut off eventually.

The assumption that n(w) =0 everywhere is equivalent to

: able 1

fo(t) = 0 for all +t. The computation invokes the phase shift, quT, o
indirectly by the rms procedure. This seems reasonable; a more exact
csmputation must question the assumption that F(w) = 0. Cases will
arise where the phases of all folded contributions cancel at w = 0.
More specifically, large errors that cannot be ignored are predicted
for the heavily aliased situations as our sample calculation of rms

error illustrates.
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6. DISCUSSION

Analysis of the multirate problem progresses most easily
in the frequency domain; it is more difficult to give a comfortable
physical picture of the way in which the folding of spectral compénents
can cause errors in the final values of the parameters sought. The phe-
nomenon of multirate folding, when transformed to the time domain,becomes
one of the loss of certain components in the spectrum. Besides the
earlier 6bservations, thié means that beat notes between tones can be
hidden. The analogy is complicated for we deal-with a spectral con-~
tinuum; therefore, beating or mixing of tones becomes a very complicated
proceéa. Nevertheless, since for the example: chosen the duty cycle is
- 1/4, it is reasonable to expect that mixing could be subjectively lost.
This means, in turn, that amplitudes of the 'one time' data although
carrying instantaneous information, provide erroneous summaries over
longer times, since either nodes or maxima could be sampled and there is
no way to distinguish the two cases. The complication of discuésing the
higher order alias problem in the time domain is brought out in the text
and no more can be done but to give an intuitive guide for the results |
of the spectral folding as they will take place in the time éeries which
is returned by the spécecraft. For quantitative examination, we must
return to the spectral domain according to the earlier arguments. It
is clear that from the most fundamental standpoint it is impossible not
to have the spectral folding issue carry over into the time domain through
the process of inverse Fourier transformation. Lastly it becomes clear

how any high fredquencies present in the time:serieS'could be the result

S
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¥

of, or modified by a beat or resonance phenomenon according to the

folding of the spectra. Any attempt to circumvent the folding restric-

tion violates the fundamental theorem of sampling. In short, measures

of the mean field and/or of the variance in the field are subject to the
risk that long period waves having & broad span of frequencies can beat
together to produce artificiallj high or low values of the measured com-
ponents, depending upon the particular character of the spectra.

An additional comment sometimes made is that instantaneous field
values are more suitable for geophysical study than when filtered to
satisfy the Nyquist criterion. Fast sampled short d§ta burst which
exceed the bandwidth allowed by the sample period haée little physical
relevance unless the spectrum can be shown to be free of alias-prone
components. In that case there is no point in "super-Nyquist" sampling.

The point is sometimes raised that difficulties which might ogcur‘
in the spectral domain are not necessarily reflected in the time domain
where, for the case cited, the data have the form of an interrupted time
series. We believe that this objection stands corrected. Although
spectral informatidn as usually presented lacks phase since the moduli
of the complex Fourier coefficients alone are given (as in powef spectra),
this representation nevertheless provides a powerful means of understand-
iﬁg geophysical data. For example, it would be difficult to determine
the Q of a fesonance from time series alone. Another example lies in
the caseading of eddys in the decay of turbulence. It would take con-
siderable endeavor to attempt a meaningful formulation of this problem

with recourse only to the time domain.
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It is clear that the optimum bandwidth for sampled data occurs most
simply for periodic sampling. Therefore, in commutation all experiment
lines should be evenly interlaced'so that burst transmission is ﬁot used..
The alternative, sometimes employed, is to sample at a‘pe:iodic rate and
buffer data so that they are read out compatibly with the commutated
telemeter. However, this is expensive in circuit complexity and reli-
ability. Also it is not always possible to make the sampling and buffer-
ing commepsurate with the commutation rate, and therefore, some decrease

-of bandwidth from the optimum may be necessary so as to observe the

Nyquist limit.
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my attention to the coalescing and degeneracy introduced for long sample

‘on times.’
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TABLE 1

Normalized ramp rms folding error,
cutoff, wy = n/Ty %

0.25 0

0.50 9

0.75 : 18

1.00 | 25

2.00 37

k.00 >200

i
T

Fractional error in the neighborhood of

w = 0 due to folded contributions. The
frequency is normalized to ¥ = l’at n/T.
*Mhis value is computed solely from terms
vhere n = 0. The correct value would
include contributions from n = 1 and the

error would be higher.
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FIGURE TITLES

Fig. 1.- The three functions which form the complete sampled time series.
The original data are given by £(t), the initial time series, g(t) is
the fast sampling sequence of delta functions, and g¥*(t) is the modu-~
lation or commutation which switches g(t). |

Fig. 2.~ The spectrum of switching tones generated by g(t) and g*(t).
The primary order, n, corresponds to the high sampling rate of g(t)
while the subsidiary spectra are identified by the order k. 'The
case shown is for a duty cycle of 0.25 which has zeros for ’
k=54 8,12, . . . . This case is discussed at length ih the text;‘
Eacg,of the switch tones forms the axis for a replication of the data'
spectrum... These overlapped spectra are not shown here. The original
Nyquist limit given by the fast rate sampling corresponds to band
limiting at the first zero, that is, n = 0, k = L.

Fig. 3.~ The spectrum of switching tones generated by g(t) and g*(t).
The case shown is for n = 0 and a duty cycle of 0.25. The subsidiary
spectra, k =1, . . ., are shown up to the'first zero, k = 4 and do
not include the negative (n = 0, k = -1, -2, ~3) folded terms. The
original Nyquist limit given by the fast rate sampling corfesponds to
band limiting at tﬁe first zero, that is, n = 0, k = hf The indicated
amplitudes at w = O are to be multiplied by F(w - wg % an)
according to equation 4 to obtain the contribution of each folded

spectrum at w = 0.
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Fig. 4.- A simplified view of the reordering of the sampling delta
functions for an interrupted g(t), that is, with g¥(t) modulation.
Here we ignore the modulation in the sense discussed earlier and
merely reorder the interrupted sequence into periodic ‘ sets of
period Tz. This allows the process of secondary si)eé:tral generation

to be displayed from the standpoint of complex Fourier coefficients

as shown in the text.
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